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Ageing and death—
mitochondria divide or
die, depending on their
interactions with the
nucleus

Animals with a fast metabolic rate tend to age quickly and succumb to
degenerative diseases such as cancer. Birds are an exception because they
combine a fast metabolic rate with a long lifespan, and a low risk of disease.
They achieve this by leaking fewer free radicals from their mitochondria. But
why does free-radical leakage affect our vulnerability to degenerative
diseases that on the face of it have little to do with mitochondria? A dynamic
new picture is emerging, in which signalling between damaged mitochondria
and the nucleus plays a pivotal role in the cell’s fate, and our own.
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Figure 5-21 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)
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synthesis

Figure from: ALLEN, J F (2002) Photosynthesis of ATP - Electrons, Proton Pumps, Rotors, and Poise. Cell 110, 273-276



synthesis

Figure from: ALLEN, J F (2002) Photosynthesis of ATP - Electrons, Proton Pumps, Rotors, and Poise. Cell 110, 273-276



Figure 5-27b part 1 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)
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Figure 5-27b part 3 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)
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Figure 5-28 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)
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Figure 5-21 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)
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Rotation of the Fo-ATPase.Fo-ATPase as a proton-driven, rotary stepping motor, as proposed by Junge (1997).



Q synthesis
I

H-l-

Rotation of the Fo-ATPase.Fo-ATPase as a proton-driven, rotary stepping motor, as proposed by Junge (1997).
http://jfa.sbcs.gmul.ac.uk/~john/webstar/ltm/06/3ATP.html
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Figure 5-24a Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)







The F,-F_ATPase



Intermembrane
space

Figure 5-23b Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)
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Structural model of EFoF1 (stator
subunits in dark gray, rotor in light
gray), and, at the very right side,
of the homodimer of subunit b,
and numbers for the torsional
stiffness of various domains.
Numbers given on the left side
resulted from data obtained with
EF1 in the set-up shown in Fig.
1A, those in the right side from
EFoF1 as in Fig. 2A, and the one
at the very right from EFoF1 as in
Fig. 4A. The stiffness comes in
units of pNnm. Numbers
associated with horizontal colored
lines denote the resulting stiffness
result (see Eq. 3) as

observed when the respective
disulfide cross link (its two
cysteines shown in the same hue,
dark

on the stator or light on the rotor)
was closed. The numbers between
the black vertical arrows

denote the stiffnesses of the rotor
domain lying between the
respective pairs of cross link
positions. The red arrow marks the
region of greatest compliance in
EFoF1, the dominant elastic
buffer which is responsible for an
elastic power transmission
between Fo and F1.
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Hendrik Sielaff, Henning Rennekamp, André Wachter, Hao Xie, Florian Hilbers, Katrin Feldbauer, Stanley D.
Dunn, Siegfried Engelbrecht, and Wolfgang Junge Domain compliance and elastic power transmission
in rotary FoF.-ATPase PNAS 2008 105:17760-17765; published online before print November 10, 2008,
doi:10.1073/pnas.0807683105
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Commentary: Junge Proc. Natl. Acad. Sci. USA 96 (1999)

Table 1. Comparison of molecular motors

Molecular mass, Max. speed Step size Stall load
Motor Drive 10° Da Processivity, % nm/s rev/s nm deg pN pN-nm
Kinesin ATP 1 100 800 8 6
Myosin ATP 5 1 8,000 15 <
RNAP NTP 7 100 0.35 30
Fi ATP 4 100 100 120 40
Fo PMF 1.5 100 1,500 100 (1.00) 30 (16) (40)
Flag PMF ~100 100 45,000 300 (<0.4) <1 (300) 4,800

Myosin, kinesin, RNA polymerase (RNAP), the two drives of ATP synthase (Fo, F,), and the flagellar motor (Flag) are
driven by nucleotide triphosphates (ATP, NTP) or by an electrochemical potential difference [here named protonmotive force,
(PMF)]. The processivity is almost perfect in all motors except myosin. The data for the linear motors are taken from refs.
54-57, those for the flagellar motor from refs. 35, 42, the stall load of F; from ref. 18, the maximum speed of F; from ref.
39, and the data for Fp were assumed to match those of F; when operating in the holoenzyme.
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Seeing a Molecular Motor at Work
www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011 pp. 704-705

Wolfgang Junge' and Daniel J. Miiller?



High-Speed Atomic Force
Microscopy Reveals Rotary Catalysis
of Rotorless F;-ATPase

Takayuki Uchihashi,™*>** Ryota lino,>*>* Toshio Ando,"*>t Hiroyuki Noji**°>t

F, is an adenosine triphosphate (ATP)—driven motor in which three torque-generating B subunits
in the asPB3 stator ring sequentially undergo conformational changes upon ATP hydrolysis to
rotate the central shaft y unidirectionally. Although extensive experimental and theoretical

work has been done, the structural basis of cooperative torque generation to realize the
unidirectional rotation remains elusive. We used high-speed atomic force microscopy to show
that the rotorless F; still “rotates”; in the isolated 3B stator ring, the three B subunits
cyclically propagate conformational states in the counterclockwise direction, similar to the rotary
shaft rotation in F;. The structural basis of unidirectionality is programmed in the stator ring.
These findings have implications for cooperative interplay between subunits in other

hexameric ATPases.

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757
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0 nm

Fig. 1. (A) Averaged AFM image of C-terminal side of the o3B3 subcomplex without nucleotide (movie
S1). (B) C-terminal side of the crystal structure of the nucleotide-free o3B3 subcomplex [Protein Data
Bank (PDB) code 1SKY] (21). The a and B subunits are colored in cyan and pink, respectively. The
C-terminal DELSEED motif of B corresponding to the high protruding portions is highlighted in red.
(€) Simulated AFM image of the o383 subcomplex constructed from the structure in (B). (D) Averaged
AFM image of C-terminal side of the o3B3 subcomplex in 1 mM AMPPNP. (E) Atomic structure of the
o3B3 subcomplex with bound nucleotides. This structure is obtained by removing y from the crystal
structure of F, (PDB code 1BMF) (4). (F) Simulated AFM image constructed from the structure in (E).
The brightness of all AFM images in this paper represents the sample height but is not linearly set to
highlight the top surface structure (fig. S4).



Movie S1
AFM movie of the C-terminal side of asB; without nucleotide. Scan area, 18 x 15 nmz?; frame
rate, 10 fps

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757


http://www.sciencemag.org/content/suppl/2011/08/03/333.6043.755.DC1/1205510s1.mov
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Movie S1
AFM movie of the C-terminal side of asf; without nucleotide. Scan area, 18 x 15 nmz?; frame
rate, 10 fps

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757
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Movie S3
AFM movie of the C-terminal side of asB5 in 2 puM ATP. Scan area, 17 x 13 nmz?; frame rate,
12.5 fps.

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757
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Movie S3
AFM movie of the C-terminal side of asfBs in 2 yM ATP. Scan area, 17 x 13 nmz?; frame rate,
12.5 fps.

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757



http://www.sciencemag.org/content/suppl/2011/08/03/333.6043.755.DC1/1205510s3.mov
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Movie S6
AFM movie of the C-terminal side of asp5 in 2 pM ATP. Scan area, 21 x 14 nmz?; frame rate, 12.5 fps.

The pixel with the highest (brightest) position in each image is indicated by the blue circle. The center
used for calculating the rotational angle is indicated by the cross mark.

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757
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Unidirectional
conformational change

2uM -ATP

area: 21 x 14 nm?
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X  the center

Movie S6
AFM movie of the C-terminal side of asp5 in 2 pM ATP. Scan area, 21 x 14 nmz?; frame rate, 12.5 fps.
The pixel with the highest (brightest) position in each image is indicated by the blue circle. The center

used for calculating the rotational angle is indicated by the cross mark.
www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 7955-757
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Successive AFM images showing the conformational change of B’s in 2 uM ATP (movie S3).
The highest pixel in each image is indicated by the red circle. Frame rate, 12.5 frames/s.

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757




The present results prove that the stator o533
ring alone possesses high cooperativity for se-
quential power stroking among three catalytic
B’s. This was also indicated by the observations
that the occasional subunit dissociation com-
pletely stopped the rotary propagation of the con-
formational state (fig. S12). Thus, the “y-dictator”
model (/3), which proposes that only the in-
teraction with y determines the conformational
and catalytic states of B’s (23, 24), is not valid.
On the other hand, the ATP-binding rate and the
efficiency of unidirectionality of the asf3; sub-
complex are distinctly lower than those of F;
(Fig. 3 and fig. S11). Thus, the interaction with
v 1s dispensable but still important for the rapid
and precise rotary catalysis. Our findings are not
inconsistent with the observations that the rates
and equilibriums of the catalytic reactions are
apparently under the control of the rotary angle
of v (10—12). The intrinsic mterplay among B’s
would reinforce catalytic control by y; even if y
tightly interacts with only one B, it still can act
on all B’s through B-B interplay.

www.sciencemag.org SCIENCE VOL 333 5 AUGUST 2011
pp. 755-757
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View from above and then below the F, domain along
the rotating y-subunit.

© Medical Research Council
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How the rotating y-subunit imposes conformational states
on a 3—subunit required for substrate binding,
ATP formation and ATP release.
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Three conformations of a catalytic p—subunit produced
by 120° rotations of the central y-subunit
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The rotary catalytic mechanism of mitochondrial
ATP synthase.

© Medical Research Council
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MRC Nutrition Unit
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“The way in which mitochondria generate
energy is one of the most bizarre
mechanisms in biology. Its discovery has
been compared with those.of Darwin and
Einstein. Mitochondria pump protons:across a
membrane to generate an electric charge
with the power, oyer.a-few nanometres, of a
bolt of lightning £This proton power is
harnessed by the elementary particles of life
—mushroom-shaped proteins in the |
membranes—to generate energy in the form
of ATP. This radical meehanism is as | |
‘ fundamental-tolife as DNA itself, and gives
an ms@t\t |nto he origin. of life on ‘Earth












SBCS-922 Membrane Proteins

Mitochondria and respiratory chains

John F. Allen

School of Biological and Chemical Sciences,
Queen Mary, University of London

‘a,_@_s’ Queen Mary

University of London



SBCS-922 Membrane Proteins

Mitochondria and respiratory chains

John F. Allen

School of Biological and Chemical Sciences,
Queen Mary, University of London

jfallen.org/lectures/

‘a_@_s’ Queen Mary

University of London



