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Redox carriers
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Mitochondrial DNA—a tiny circular genome in the mitochondria, inherited from
the mother. Males have sperm and females have eggs. Both pass on the
genes in their nucleus, but under normal circumstances only the egg passes
on mitochondria to the next generation—along with their tiny but critical
genomes. The maternal inheritance of mitochondrial DNA has been used to
trace the ancestry of all human races back to ‘Mitochondrial Eve’, in Africa
170 000 years ago. Recent data challenge this paradigm, but give a fresh
insight into why it is normally the mother who passes on mitochondria. The
new findings help explain why it was ever necessary for two sexes to evolve
at all.



Redox potential and [oxidized]/[reduced] ratio

Just as the standard Gibbs energy change AG® does not reflect the actual
conditions existing in the cell, the standard redox potential £° must be
qualified to take account of the relative concentrations of the oxidized and
reduced species.

The actual redox potential £ at pH = 0 for the redox couple:

Oxidized + ne~ = Reduced

is given by the relationship:

T idized
E=EFE [ Z.S-R—log10 [[OXI = ]]
nF [reduced]

where R is the gas constant and F the Faraday constant. Note that this equation
is closely analogous to the ‘conventional’ equation mvolving standard Gibbs
energy changes (equation 3.9).
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Figure 3.3 The variation of E;, with the extent of reduction of a redox couple.
n = 1, n = 2 refer to one- and two-electron oxido-reductions, respectively.



"AToAT}92dSa1 ‘SUOTIONPAI-OPIXO UOIJO[-0M] PUR -dUO0 0) IAJAI 7 = U ‘[ = U
*3[dnod X0pal & J0o WonINpPal Jo JUIIXI 3Y) YIM 7 Jo uonBLIBA Y], ¢'¢ 9Ny

uolonpal 9

00} 08 09 ot 0c 0
T _ T T

- 06+

09+

0E+

0 (AW)

0€—

09—




Table 3.2 Some mid-point potentials and examples of actual redox potentials

Oxidized + ne~ + mH™ = reduced

En7 AFE. Typical Ey 7 (mV)"
n m (mV) perpH  ox/red ratio

li:em%doxin oxidized/reduced 1 0 —430 0

H7/5H, (at 1 atm) 1 1 —420 —60

0, (1 atm™)/(superoxide) 1 0 —330 0 10> —30
NAD*/NADH 2 1 =320 —30 10 —290
NADP*/NADPH 2 1 —320 —-30 0.01 —380
Menaquinone/menaquinol 2 2 —74 —60

Glutathione oxidized/reduced 2 2 —172 —60 0.01 —240%

(when GSH + GSSG = 10mm)

Fumarate/succinate 2 2 +30 —60

Ubiquinone/ubiquinol 2 2 +60 —60

Ascorbate oxidized/reduced 2 1 +60 —30

Cyt ¢ oxidized/reduced 1 0 +220 0

Ferricyanide oxidized/reduced 1 0 +420 0

0, (1 atm")/2H,0 (55 M) 4 4 +820 —60

prproximate values for mitochondrial matrix under typical conditions.
jl atm oxygen = 1.25mm.
=See equation 3.22.
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Figure 1.3 Proton circuits and electrical circuits are analogous.

A simple electrical circuit comprising battery and light bulb is analogous to a
basic proton circuit. Voltage (Ap equivalent to V'), current (Jy+ equivalent to )
and conductance CyyH™ (equivalent to electrical conductance — reciprocal ohms)
terms can be derived. Short-circuits have similar effects and more complex
circuits with parallel batteries can be devised to mimic the multiple proton pumps
in the mitochondrion (see Chapter 4).
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Figure 4.2 The mitochondrial respiratory chain consists of three proton
pumps (complexes I, IIT and IV), which act in parallel with respect to the
proton circuit and in series with respect to the electron flow.

Solid lines: pathway of proton flux; dotted line: pathway of electron transfer. For
redox couples, see Table 3.2.
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Figure 14-22. The structure
of the heme group attached
covalently to cytochrome c.
The porphyrin ring is shown in
blue. There are five different
cytochromes in the respiratory
chain. Because the hemes in
different cytochromes have
slightly different structures
and are held by their
respective proteins in different
ways, each of the cytochromes
has a different affinity for an
electron.

(Alberts et al. Molecular
Biology of the Cell)
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Figure 14-23. The structures of two types of iron-sulfur centers. (A) A center of the

2Fe2S type. (B) A center of the 4Fe4S type. Although they contain multiple iron atoms,

each iron-sulfur center can carry only one electron at a time. There are more than seven
different iron-sulfur centers in the respiratory chain.

(Alberts et al. Molecular Biology of the Cell)
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Figure 14-24. Quinone electron carriers. Ubiquinone in the respiratory chain picks up one H* from the
aqueous environment for every electron it accepts, and it can carry either one or two electrons as part of a
hydrogen atom (yellow). When reduced ubiquinone donates its electrons to the next carrier in the chain, these
protons are released. A long hydrophobic tail confines ubiquinone to the membrane and consists of 6—10 five-
carbon isoprene units, the number depending on the organism. The corresponding electron carrier in the
photosynthetic membranes of chloroplasts is plastoquinone, which is almost identical in structure. For
simplicity, both ubiquinone and plastoquinone are referred to in this chapter as quinone (abbreviated as Q)

(Alberts et al. Molecular Biology of the Cell)
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Figure 14-26. The path of electrons through the three respiratory enzyme complexes. The relative size and shape of each
complex are shown. During the transfer of electrons from NADH to oxygen (red lines), ubiquinone and cytochrome c serve as
mobile carriers that ferry electrons from one complex to the next. As indicated, protons are pumped across the membrane by
each of the respiratory enzyme complexes.

Molecular Biology of the Cell Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter.
2002
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The Respiratory Chain Includes Three Large Enzyme
Complexes Embedded in the Inner Membrane

Molecular Biology of the Cell Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. 2002
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1. The (generally known as complex I) is the largest of the respiratory

enzyme complexes, containing more than 40 polypeptide chains. It accepts electrons from NADH and passes
them through a flavin and at least seven iron-sulfur centers to ubiquinone. Ubiquinone then transfers its

electrons to a second respiratory enzyme complex, the cytochrome b-c; complex.

Molecular Biology of the Cell Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. 2002
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