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Mitochondria are tiny organelles inside cells that generate almost all our
energy in the form of ATP. On average there are 300-400 in every cell, giving
ten million billion in the human body. Essentially all complex cells contain
mitochondria. They look like bacteria, and appearances are not deceptive:
they were once free-living bacteria, which adapted to life inside larger cells
some two billion years ago. They retain a fragment of a genome as a badge
of former independence. Their tortuous relations with their host cells have
shaped the whole fabric of life, from energy, sex, and fertility, to cell suicide,
ageing, and death.
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The way in which mitochondria generate energy is one of the most bizarre
mechanisms in biology. Its discovery has been compared with those of
Darwin and Einstein. Mitochondria pump protons across a membrane to
generate an electric charge with the power, over a few nanometres, of a bolt
of lightning. This proton power is harnessed by the elementary particles of
life—mushroom-shaped proteins in the membranes—to generate energy in
the form of ATP. This radical mechanism is as fundamental to life as DNA
itself, and gives an insight into the origin of life on Earth
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Volume 142, Issue 2

On the cover: Eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Here, Cardenas et al. (pp. 270-283) demonstrate
that constitutive low-level Ca2+ release through endoplasmic reticulum InsP3 receptor release channels (yellow flashes), in close proximity to
mitochondria, is essential for mitochondria to produce sufficient ATP and to maintain normal cell bioenergetics. The image is modified from the
original artwork of Odra Noel, with her permission (http://www.odranoel.eu).
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Does life inherently become more complex? There may be nothing in the
genes to push life up a ramp of ascending complexity, but one force lies
outside the genes. Size and complexity are usually linked, for larger size
requires greater genetic and anatomical complexity. But there is an
immediate advantage to being bigger: more mitochondria means more
power and greater metabolic efficiency. It seems that two revolutions were
powered by mitochondria—the accumulation of DNA and genes in
eukaryotic cells, giving an impetus to complexity, and the evolution of
warm-blooded animals, which inherited the earth
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This is a look inside an isolated mitochondrion, showing the outer membrane (OM), inner
peripheral membrane (IM), and some of the internal compartments called cristae (C) formed by
infolding of the inner membrane. Arrows point to narrow tubular regions of the IM that connect

cristae to periphery and to each other.
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Mitochondrial morphology
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Brown fat adipose tissue
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Figure 14-26. The path of electrons through the three respiratory enzyme complexes. The relative size and shape of each
complex are shown. During the transfer of electrons from NADH to oxygen (red lines), ubiquinone and cytochrome c serve as
mobile carriers that ferry electrons from one complex to the next. As indicated, protons are pumped across the membrane by
each of the respiratory enzyme complexes.

Molecular Biology of the Cell Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter.
2007
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Figure 1.1 Energy-transducing membranes contain pairs of proton pumps
with the same orientation.

In each case the primary pump utilizing either electrons (e ) or photons (hv)
pumps protons from the N (negative) compartment to the P (positive) compart-
ment. Note that the ATP synthase in each case is shown acting in the direction of
ATP hydrolysis, when it would also pump protons from the N- to the P-phase.
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Figure 1.2 A hypothetical ‘thylakoid’ to demonstrate chemiosmotic coupling.
An ATP synthase complex is incorporated into a phospholipid membrane such
that the ATP binding site is on the outside. (a) ATP is added, the nucleotide starts
to be hydrolysed to ADP + P, and protons are pumped into the vesicle lumen. As
ATP is converted to ADP + P, the energy available from the hydrolysis steadily
decreases, while the energy required to pump further protons against the gradi-
ent which has already been established steadily increases. (b) Eventually an
equilibrium is attained. (c) If this equilibrium is now disturbed, for example, by
removing ATP, the ATP synthase will reverse and attempt to re-establish the equi-
librium by synthesizing ATP. Net synthesis, however, would be very small as the
gradient of protons would rapidly collapse and a new equilibrium would be
established. For continuous ATP synthesis, a primary proton pump, driven in this
example by photons (hv), is required to pump protons across the same membrane
and replenish the gradient of protons. A proton circuit has now been established.
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Figure 1.3 Proton circuits and electrical circuits are analogous.

A simple electrical circuit comprising battery and light bulb is analogous to a
basic proton circuit. Voltage (Ap equivalent to V'), current (Jy+ equivalent to )
and conductance CyyH™ (equivalent to electrical conductance — reciprocal ohms)
terms can be derived. Short-circuits have similar effects and more complex
circuits with parallel batteries can be devised to mimic the multiple proton pumps
in the mitochondrion (see Chapter 4).
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Figure 1.4 Schematic representation of a typical mitochondrion and sub-
mitochondrial particle.

P and N refer to the positive and negative compartments. Note that the shape of
the cristae is highly variable and that communication between cristae and inter-
membrane space may be restricted.
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Figure 1.5 Gram-negative bacteria and vesicle preparations.

P and N refer to positive and negative compartments. The periplasm is part of the
P-phase, which also includes the bulk external medium, since the outer membrane
is freely permeable to ions. Note that Gram-positive bacteria differ by lacking an
outer membrane and a periplasm. Nevertheless, similar vesicle preparations can
be made from these organisms as is also the case for the archaca.
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Iigure 1.6 Chloroplasts and their thylakoids.

Nole it is probable that there is a single continuous lumen (the internal thylakoid
space). The thylakoid membrane is heterogeneous with, for example, the ATP
wynthase being excluded from the grana (appressed regions) where the membrane
i closely stacked (see Chapter 6). Light-driven proton pumping occurs from the
- 1o the P-phase (note, however, that in steady-state light the membrane potential
weross o thylakoid membrane is negligible and that the pH gradient dominates —
we Chapter 6).
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Figure 1.7 Photosynthetic bacteria and chromatophores.

The cytoplasmic membrane of photosynthetically grown organisms such as
Rhodobacter sphaeroides is highly invaginated. When the cells are forced
through a narrow orifice at high pressure (the French press), the membranes
pinch off as shown to give chromatophores.
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Figure 1.8 Pathways of energy transduction.
T'he protonmotive force interconnects multiple forms of energy.
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A.The proton motive force across the boundary of LUCA.
The pmf is a gradient of H+ concentration and electrical
potential that stores energy and makes it available for synthesis
and transport. The pmf is made by an alkaline (high pH)
internal effluent from LUCA's founding hydrothermal vent and

by an acidic (low pH) external environment of carbonic acid
solution.
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A.The proton motive force across the boundary of LUCA.
The pmf is a gradient of H+ concentration and electrical
potential that stores energy and makes it available for synthesis
and transport. The pmf is made by an alkaline (high pH)
internal effluent from LUCA's founding hydrothermal vent and
by an acidic (low pH) external environment of carbonic acid
solution.
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B.The proton motive force of living cells descended from LUCA.
The pmf is a gradient of H+ concentration and electrical
potential that stores energy and makes it available for synthesis
and transport.The pmf is made by an alkaline (high pH)
cytoplasm and by an acidic (low pH) extracellular environment.
The gradient is continuously replenished by electrons flowing
across the membrane from donors to acceptors.
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A.The proton motive force across the boundary of LUCA. B.The proton motive force of living cells descended from LUCA.
The pmf is a gradient of H+ concentration and electrical The pmf is a gradient of H+ concentration and electrical
potential that stores energy and makes it available for synthesis potential that stores energy and makes it available for synthesis
and transport. The pmf is made by an alkaline (high pH) and transport.The pmf is made by an alkaline (high pH)
internal effluent from LUCA's founding hydrothermal vent and cytoplasm and by an acidic (low pH) extracellular environment.
by an acidic (low pH) external environment of carbonic acid The gradient is continuously replenished by electrons flowing
solution. across the membrane from donors to acceptors.

Nick Lane, John FAllen and William Martin (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32:271-280
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