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Cell Biology and Developmental Genetics

Lectures by John F. Allen

Endosymbiosis and the origin of bioenergetic organelles. Some history

Endosymbiosis and the origin of bioenergetic organelles.
A modern view

Mitochondria as we know them and don't know them
Why do chloroplasts and mitochondria have genomes!?
Co-location for Redox Regulation

Mitochondria, ageing, and sex — energy versus fidelity
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Lecture 3

Mitochondria as we know them and don't know them
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Matrix. This large internal space contains a highly concentrated mixture of
hundreds of enzymes, including those required for the oxidation of pyruvate and
fatty acids and for the citric acid cycle. The matrix also contains several identical
copies of the mitochondrial DNA genome, special mitochondrial ribosomes, tRNAs,
and various enzymes required for expression of the mitochondrial genes. =

Inner membrane. The inner membrane (red ) is folded into numerous cristae, greatly |
increasing its total surface area. It contains proteins with three types of

functions: (1) those that carry out the oxidation reactions of the electron-transport
chain, (2) the ATP synthase that makes ATP in the matrix, and (3) transport proteins
that allow the passage of metabolites into and out of the matrix. An electrochemical
gradient of H*, which drives the ATP synthase, is established across this membrane,
so the membrane must be impermeable to ions and most small charged molecules. _

Outer membrane. Because it contains a large channel-forming protein (called porin), |
the outer membrane is permeable to all molecules of 5000 daltons or less. Other
proteins in this membrane include enzymes involved in mitochondrial lipid synthe-
sis and enzymes that convert lipid substrates into forms that are

subsequently metabolized in the matrix. -

Intermembrane space. This space (white) contains several enzymes that use the ATP_T
passing out of the matrix to phosphorylate other nucleotides. >
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Morphology

Mitochondrion

Intermembrane space

21999 Addison Wesley Longman, Inc.
* Mitochondria have cristae and are sausage-shaped
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Citric acid cycle
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Oxidises acetyl residues (CH3-CO-) to carbon dioxide
Two turns produce 8 NADH, 2 FADH,, and 2 ATP
Reducing equivalents transferred to NAD+/FAD and then to the respiratory chain
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Electron transport chain
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* Generates a proton motive force for ATP synthesis
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Electron transport chain
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Oxidation of reduced cofactors results in transfer of protons across membrane
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Mitochondrial morphology
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* Mitochondria are invariably sausage-shaped and have a baffles
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Mitochondria as we didn’t know them

Simple text-book depiction of
cristate mitochondria
IS Incorrect
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Mitochondrial morphology

Crista Membrane
In Yellow

Outer Membrane
In Dark Blue

Inner Boundary Membrane
In Light Blue

* Seems still ok

(‘Alun 91e35 0301 ues) Aduq Auu]






Sunday, 14 October 12



Sunday, 14 October 12 .



Mitochondrial morphology
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* Does not agree with text books!
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Mitochondrial morphology
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Brown fat adipose tissue

Neurospora
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Mitochondrial morphology
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* Mitochondria are NOT invariably sausage-shaped
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Mitochondrial morphology
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Mitochondria form a highly dynamic

network which divides and fuses continuously
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Mitochondria as we didn’t know them

Mitochondria are the sites of iron-
sulphur cluster assembly
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Iron sulphur clusters

[2Fe-2S5] X >0<

[3Fe-4S] ﬁ\%\ /&\@)3\ [4Fe-4S]

7 « Co-factors of proteins
that play an important
role
in metabolism, electron-
transfer and regulation
of gene expression

Sunday, 14 October 12




Iron sulphur clusters

iron
Ala cytosolic
organellar S tei
FeS proteins ransp. FeS proteins
organelle
cytosol
. In eukaryotes mitochondria are the primary site of Fe-S cluster biogenesis
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Respiration

An energy-converting
series of coupled
oxidation-reduction
reactions In which an
inorganic chemical
compound or element
s the terminal electron
acceptor

Fermentation

An energy-converting
series of coupled
oxidation-reduction
reactions In which an
organic chemical
compound Is the
terminal electron
acceptor
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Mitochondria as we didn’t know them

Some mitochondria carry out anaerobic
respiration and anaerobic oxidative
phosphorylation
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Glucose
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Comparison of mitochondrial carbohydrate metabolism in aerobically and anaerobically functioning mitochondria. As an example, the main pathways of aerobic
(red arrows) and anaerobic (blue arrows) metabolism in Fasciola hepatica are shown [11]. Transport of electrons is shown in dashed arrows and end products are
shown in boxes. Abbreviations: AcCoA, acetyl-CoA; ASCT, acetate:succinate CoA-transferase; C, cytochrome c, C |, complex I; C lll, complex Ill; CIV, complex
IV; CITR, citrate; FRD, fumarate reductase; FUM, fumarate; MAL, malate; ME, malic enzyme; OXAC, oxaloacetate; PDH, pyruvate dehydrogenase; PEP,
phosphoenolpyruvate; PYR, pyruvate; RQ, rhodoquinone; SDH, succinate dehydrogenase; SUCC, succinate; Succ-CoA, succinyl-CoA; UQ, ubiquinone.
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Examples Group Respiratory Chain Main end products® Characteristic Refs

components”
e donor e acceptor
Aerobic (classical)
Unicellular  Saccharomyces Yeast NADH, FADH, O, CO, H,O - [56]
Metazoa Homo, Arabidopsis Mammals, plants NADH, FADH, O, CO,, H,O -

Characteristics of various types of mitochondria

Tielens, Rotte, Hellemond & Martin (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27: 564-572.
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Examples Mammals, Parasitic Ciliates, Parasitic Trichomonads, Diplomonads,

of organisms: Ciliates, helminths, Fungi2 helminths, Ciliates, Entamoeba,
Fungi? Trypanosomatids Euglena Fungi3 Fungi4
Aerobic Aerobic Anaerobic Anaerobic Anaerobic Anaerobic
Types of
ATP-generating External Fumarate Type II: Type I:
organelles: Classic + Fermentation e~ acceptor reduction Hydrogenosome (None)
; SDH—‘FRD’
Adaptation U0 — RQ

to aerobic and
anaerobic niches ASCT

PFO Loss of

Krebs ATP synthesis

Hydrogenase Ox Phos in the organelle
e N PDH

Facultatljv'e Krebs (SDH/UQ)

anaerobic Ox. Phos.

‘pluripotent’ Resp. chain with

ancestral several term. oxid.

eukaryote Hydrogenase

PDH & PFO
ASCT

o-Proteobacterial symbiont

Archaebacterial host

TiB3

Evolutionary relations between distinct energy generating organelles

Abbreviations: ASCT, acetate:succinate CoA-transferase; FRD, fumarate reductase; Ox.Phos., oxidative phosphorylation; PDH, pyruvate dehydrogenase; PFO,
pyruvate:ferredoxin oxidoreductase; Resp., respiratory; RQ, rhodoquinone; SDH, succinate dehydrogenase; term. oxid., terminal oxidases; UQ, ubiquinone.
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Summary

Mitochondria are central to the cell's energy
metabolism

Mitochondria are highly dynamic and continuously fuse
and divide

Mitochondria play an essential role in the assembly of
FeS clusters

Mitochondria can perform anaerobic respiration
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Lane & Martin (2010) The energetics of genome
complexity. Nature 467: 929-934.

Frey & Mannella (2000) The internal structure of
mitochondria. Trends Biochem Sci 25: 319-324.

Lill & Muhlenhoff (2005) Iron-sulfur-protein biogenesis in
eukaryotes. Trends Biochem Sci 30:133-141.
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Martin & Muller (1998) The hydrogen hypothesis for the first
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Lecture 4

Why do chloroplasts and mitochondria have genomes!?
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